3.226 \(\int \frac {x \tan ^{-1}(a x)}{\sqrt {c+a^2 c x^2}} \, dx\)

Optimal. Leaf size=59 \[ \frac {\sqrt {a^2 c x^2+c} \tan ^{-1}(a x)}{a^2 c}-\frac {\tanh ^{-1}\left (\frac {a \sqrt {c} x}{\sqrt {a^2 c x^2+c}}\right )}{a^2 \sqrt {c}} \]

[Out]

-arctanh(a*x*c^(1/2)/(a^2*c*x^2+c)^(1/2))/a^2/c^(1/2)+arctan(a*x)*(a^2*c*x^2+c)^(1/2)/a^2/c

________________________________________________________________________________________

Rubi [A]  time = 0.06, antiderivative size = 59, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.150, Rules used = {4930, 217, 206} \[ \frac {\sqrt {a^2 c x^2+c} \tan ^{-1}(a x)}{a^2 c}-\frac {\tanh ^{-1}\left (\frac {a \sqrt {c} x}{\sqrt {a^2 c x^2+c}}\right )}{a^2 \sqrt {c}} \]

Antiderivative was successfully verified.

[In]

Int[(x*ArcTan[a*x])/Sqrt[c + a^2*c*x^2],x]

[Out]

(Sqrt[c + a^2*c*x^2]*ArcTan[a*x])/(a^2*c) - ArcTanh[(a*Sqrt[c]*x)/Sqrt[c + a^2*c*x^2]]/(a^2*Sqrt[c])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 4930

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*(x_)*((d_) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> Simp[((d + e*x^2)^
(q + 1)*(a + b*ArcTan[c*x])^p)/(2*e*(q + 1)), x] - Dist[(b*p)/(2*c*(q + 1)), Int[(d + e*x^2)^q*(a + b*ArcTan[c
*x])^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, q}, x] && EqQ[e, c^2*d] && GtQ[p, 0] && NeQ[q, -1]

Rubi steps

\begin {align*} \int \frac {x \tan ^{-1}(a x)}{\sqrt {c+a^2 c x^2}} \, dx &=\frac {\sqrt {c+a^2 c x^2} \tan ^{-1}(a x)}{a^2 c}-\frac {\int \frac {1}{\sqrt {c+a^2 c x^2}} \, dx}{a}\\ &=\frac {\sqrt {c+a^2 c x^2} \tan ^{-1}(a x)}{a^2 c}-\frac {\operatorname {Subst}\left (\int \frac {1}{1-a^2 c x^2} \, dx,x,\frac {x}{\sqrt {c+a^2 c x^2}}\right )}{a}\\ &=\frac {\sqrt {c+a^2 c x^2} \tan ^{-1}(a x)}{a^2 c}-\frac {\tanh ^{-1}\left (\frac {a \sqrt {c} x}{\sqrt {c+a^2 c x^2}}\right )}{a^2 \sqrt {c}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.06, size = 60, normalized size = 1.02 \[ \frac {\sqrt {a^2 c x^2+c} \tan ^{-1}(a x)-\sqrt {c} \log \left (\sqrt {c} \sqrt {a^2 c x^2+c}+a c x\right )}{a^2 c} \]

Antiderivative was successfully verified.

[In]

Integrate[(x*ArcTan[a*x])/Sqrt[c + a^2*c*x^2],x]

[Out]

(Sqrt[c + a^2*c*x^2]*ArcTan[a*x] - Sqrt[c]*Log[a*c*x + Sqrt[c]*Sqrt[c + a^2*c*x^2]])/(a^2*c)

________________________________________________________________________________________

fricas [A]  time = 0.56, size = 64, normalized size = 1.08 \[ \frac {2 \, \sqrt {a^{2} c x^{2} + c} \arctan \left (a x\right ) + \sqrt {c} \log \left (-2 \, a^{2} c x^{2} + 2 \, \sqrt {a^{2} c x^{2} + c} a \sqrt {c} x - c\right )}{2 \, a^{2} c} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*arctan(a*x)/(a^2*c*x^2+c)^(1/2),x, algorithm="fricas")

[Out]

1/2*(2*sqrt(a^2*c*x^2 + c)*arctan(a*x) + sqrt(c)*log(-2*a^2*c*x^2 + 2*sqrt(a^2*c*x^2 + c)*a*sqrt(c)*x - c))/(a
^2*c)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \mathit {sage}_{0} x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*arctan(a*x)/(a^2*c*x^2+c)^(1/2),x, algorithm="giac")

[Out]

sage0*x

________________________________________________________________________________________

maple [C]  time = 0.92, size = 144, normalized size = 2.44 \[ \frac {\arctan \left (a x \right ) \sqrt {c \left (a x -i\right ) \left (a x +i\right )}}{a^{2} c}-\frac {\ln \left (\frac {i a x +1}{\sqrt {a^{2} x^{2}+1}}+i\right ) \sqrt {c \left (a x -i\right ) \left (a x +i\right )}}{\sqrt {a^{2} x^{2}+1}\, a^{2} c}+\frac {\ln \left (\frac {i a x +1}{\sqrt {a^{2} x^{2}+1}}-i\right ) \sqrt {c \left (a x -i\right ) \left (a x +i\right )}}{\sqrt {a^{2} x^{2}+1}\, a^{2} c} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*arctan(a*x)/(a^2*c*x^2+c)^(1/2),x)

[Out]

arctan(a*x)*(c*(a*x-I)*(I+a*x))^(1/2)/a^2/c-ln((1+I*a*x)/(a^2*x^2+1)^(1/2)+I)*(c*(a*x-I)*(I+a*x))^(1/2)/(a^2*x
^2+1)^(1/2)/a^2/c+ln((1+I*a*x)/(a^2*x^2+1)^(1/2)-I)*(c*(a*x-I)*(I+a*x))^(1/2)/(a^2*x^2+1)^(1/2)/a^2/c

________________________________________________________________________________________

maxima [A]  time = 0.49, size = 61, normalized size = 1.03 \[ \frac {2 \, \sqrt {a^{2} x^{2} + 1} \arctan \left (a x\right ) - \log \left (a x + \sqrt {a^{2} x^{2} + 1}\right ) + \log \left (-a x + \sqrt {a^{2} x^{2} + 1}\right )}{2 \, a^{2} \sqrt {c}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*arctan(a*x)/(a^2*c*x^2+c)^(1/2),x, algorithm="maxima")

[Out]

1/2*(2*sqrt(a^2*x^2 + 1)*arctan(a*x) - log(a*x + sqrt(a^2*x^2 + 1)) + log(-a*x + sqrt(a^2*x^2 + 1)))/(a^2*sqrt
(c))

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.02 \[ \int \frac {x\,\mathrm {atan}\left (a\,x\right )}{\sqrt {c\,a^2\,x^2+c}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*atan(a*x))/(c + a^2*c*x^2)^(1/2),x)

[Out]

int((x*atan(a*x))/(c + a^2*c*x^2)^(1/2), x)

________________________________________________________________________________________

sympy [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*atan(a*x)/(a**2*c*x**2+c)**(1/2),x)

[Out]

Exception raised: TypeError

________________________________________________________________________________________